If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2+4p-10=0
a = 4; b = 4; c = -10;
Δ = b2-4ac
Δ = 42-4·4·(-10)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{11}}{2*4}=\frac{-4-4\sqrt{11}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{11}}{2*4}=\frac{-4+4\sqrt{11}}{8} $
| 12+5x=33 | | 3x(x-4)+6=9 | | 39=9-2x | | d/5+1=-3 | | x+4/3=6 | | -18+3/8((16-40n)=8 | | (3x+7)+(3x+6)+3x)=(3x)+(3x)+(4x+1) | | x+2+8=-3 | | 3xx=-1 | | –3(a+5)+(a+2)=9 | | 9t^2-24t+13=0 | | 16^(x+4)=32 | | –u4–9=–11 | | x/3-14=24 | | s11-s)=24 | | 63=–3(1–2n | | 15+y=312y | | -3/4n+2=5 | | 234=18m | | 2X-3=-3x+28 | | 2b+10=4b+20=90 | | W+14=-8w= | | 2x+18=16−4(x+7) | | 17–9f+6=140 | | G=4/3(p-94) | | 7x+7=73+x | | 3/4x3/4+2=12x3/4 | | 12x=432x= | | -8=-28+x/5 | | B+-5+5b=24 | | X2+8x-20x=5 | | 20=1-4m+7 |